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dvanced (non-simple-dipole) EMI models’ inversion and classification performance is 
presented for the ESTCP Live-site UXO Discrimination Study at former Camp Butner, NC. 

The advanced models combine: (1) the joint diagonalization (JD) algorithm for estimating 
number of potential anomalies from the measured data without inversion, (2) the ortho-
normalized volume magnetic source (ONVMS) for representing targets’ EMI responses and 
extracting targets’ intrinsic parameters feature vector, and (3) the Gaussian Mixture algorithm 
and probability neural network, that utilizes the extracted discrimination features for classifying 
buried objects as targets of interest or not. Namely, the studies were conducted for the next 
generation sensor data: Time-domain Electromagnetic Multi-sensor Towed Array Detection 
System (TEMTADS) and Metal Mapper (MM) sensors’ cued data sets collected at the Camp 
Bunter, live UXO site. These sensors provide the measured multi-static response (MSR) data 
matrix. Eigenvalues versus time, which are determined using the JD from the MSR data matrix, 
provide information about the number of targets contributing to the signal and their initial 
classification features. Once the number of targets is known, then data are inverted and intrinsic 
parameters, such as the total ONVMS that is a function of target’s geometry and material 
composition, are determined for each potential target. These intrinsic parameters are grouped 
using the unsupervised Gaussian mixture approach. For each group an anomaly is identified and 
ground truth is requested. Once the requested ground truth data are obtained, then each of the 
groups is classified. In this presentation, the advanced EMI methods’ data inversion, processing 
and discrimination scheme will be reviewed, and the classification results scored by the Institute 
for Defense Analyses (IDA) will be presented for both the TEMTADS and MM sensors Camp 
Butner, NC cued data sets. 
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OutlineOutline
Advanced EMI Models  

Normalized Surface Magnetic Source (NSMS) Model
Orthonormalized Volume Magnetic Source (ONVMS) Model

EMI Data Pre-processing and Inversion
Joint Diagonalization 
Direct Search technique for Multi Targets

Classification 
Clustering 
Library Matching
Results (IDA Score)

Summary
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The entire UXO classification process can be divided into three parts: 

Sensor data: d

Model Parameters: p

p=F-1 [d ]
Inverse Operator

d =F [p]
Forward Operator

UXO classification  UXO classification  

1. Data Collection 2. Data Inversion 3. Decision  
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Extended  dipole model

3D approach

Hpr

H1

H2

Primary field induces eddy 
currents inside metallic objects

NSMS model accounts for target’s heterogeneity.

Total NSMS is an intrinsic target parameter.

Forward Models: NSMSForward Models: NSMS
Normalized Surface Magnetic Source Model
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60-mm   2.36 inch   81 mm   4.2 inch

NSMS Applied to:   NSMS Applied to:   

1. APG test site (214 anomalies)
APG Discrimination results were excellent:

All UXO items were correctly identified as TOI
All TOI items were correctly identified by 
type/caliber
There was a 5 % false positive rate

APG Targets of interest (TOI)  

2. SLO Live UXO site

SLO Discrimination results:
One false negative for Metal Mapper (2492 anomalies).
Seven false negatives for TEMTADS (1464 anomalies). 

The main challenges there were:
Multiple overlapping targets 
low signal to noise ratio

SLO Targets of interest (TOI)  
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Object #2

Transmitted
magnetic field

RxScattered
field

Object #1

The ONMVS model divides 
the computational space into 
cells.

mi

Tx

Forward Models: ONMVSForward Models: ONMVS
Ortho-Normalized Volume Magnetic Source (ONVMS) Model

The key elements of the The key elements of the 
ONMVS are:  ONMVS are:  

The scattered EMI field is approximated using an orthonormalized
function expansion: 

1

( ) ( ) ,  
=

= ⋅∑H r r
vN

i i
i
ψ b ( ) 0,

,

T
i k

i

i k
dv

F m k
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1

1
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These orthogonal functions are constructed using the scattered 
magnetic field’s Green function via Gram-Schmidt ortho-normalization 
process:

ONVMS continuedONVMS continued

The ONVMSThe ONVMS: : 
Avoids an ill-conditioned matrix;  

Separates overlapping targets easily;

Provides total/effective polarizabilities; 

is applicable for non-uniform sub-volumes. 

The modeled Magnetic field is fitted to measured data, and 
The targets features are extracted  
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The goal is to: 
determine the eigenvalues of Hd tensor for each time channel.  
find an eigenvector V that will be shared by all matrices.  

Joint DiagonalizationJoint Diagonalization

T
k d kD(t ) V (t )V,  k=1, 2, ..., n= H

Representing TEMTADS data in Space -Time

Tx: 1:25

Rx: 1:25

Time Channels 1:121
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• Eigen values versus time 

JD applied to CBJD applied to CB--TEMTADS data: TEMTADS data: 

eigenvalues for classification

The eigenvalues show targets features: 

Two targets (105 mm HE and 105 mm 
HEAT), having same size, but different  
material properties have different time 
decaying eigenvalues 
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• eigenvalues versus time • eigenvalues versus time 

37 mm projectiles with 
copper bands have 
distinguishable 
eigenvalues  

TOIs have slow time  
decaying eigenvalues  

JD applied to CBJD applied to CB--TEMTADS data:TEMTADS data:

eigenvalues for classification
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• eigenvalues versus time 

Clutter items have fast 
time  decaying 
eigenvalues  

JD applied to CBJD applied to CB--TEMTADS data:TEMTADS data:

eigenvalues for classification

TOIs have slow time  
decaying eigenvalues  
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• eigenvalues versus time 

JD applied to CBJD applied to CB--TEMTADS data:TEMTADS data:

eigenvalues for Multi targets

• eigenvalues versus time 

Target 1
Target 2

Too many Targets
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• eigenvalues versus time 

• eigenvalues above threshold

The eigenvalues are small, but decay slowly in time, that means:

the anomaly is buried deep and it is a potential TOI. 

JD applied to CBJD applied to CB--TEMTADS data:TEMTADS data:

Resolving small signal to noise ratio  
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CBCB--TEMTADS Data Classification ApproachTEMTADS Data Classification Approach::

JD applied to all 2293 CBJD applied to all 2293 CB--TEMTADS data;TEMTADS data;

The number of potential targets were estimated using JD;The number of potential targets were estimated using JD;

The first Dig list was created based on Eigenvalues.The first Dig list was created based on Eigenvalues.

All data sets were inverted using the ONVMS technique;All data sets were inverted using the ONVMS technique;

The  effective polarazabilities were determined  The  effective polarazabilities were determined  

70 Custom training data sets were requested; 70 Custom training data sets were requested; 

Targets were ranked via Library matching; Targets were ranked via Library matching; 
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T-ONVMSx

T-ONVMSy
T-ONVMSz

Library Matching applied to CBLibrary Matching applied to CB--TEMTADS dataTEMTADS data

105 mm HE 

M48 Fuze

37  mm-1 37  mm-2 

105 mm HEAT 



16

Camp Butner TEMTADS Classification resultsCamp Butner TEMTADS Classification results

All data were inverted and All data were inverted and 
analyzed. analyzed. 

No False NegativesNo False Negatives: all : all 
TOI were indentified TOI were indentified 
correctly.correctly.

All 105 mm and 37 mm All 105 mm and 37 mm 
were identified by were identified by 
caliber/type; caliber/type; 

Scored Results  for the TEMTADS Cued Data Sets:
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Butner Dartmouth AdvancedModels None TEMTADS Custom v1a TOI

Number of Non-TOI Digs

N
um

be
r o

f T
O

I D
ig

s



17

CBCB--Metal Mapper Data Classification ApproachMetal Mapper Data Classification Approach::

All data sets were inverted as  All data sets were inverted as  

OneOne
Two Two 
Three Three 

targets using the ONVMS.targets using the ONVMS.

The  effective polarazabilities were determined;The  effective polarazabilities were determined;

Targets were clustered using the principal effective polarazabilTargets were clustered using the principal effective polarazabilities ; ities ; 
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Case#2504oGSo1oGeo

37 mm: Library 

ONVMS applied to CBONVMS applied to CB--Metal Mapper  Metal Mapper  
data: Anomaly #2504data: Anomaly #2504

37 mm: Library 

Single source inversion Multi targets inversion

Inverted
parameters  

Inverted parameters  
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Case#2405oGSo1oGeo

37 mm: Library 37 mm: Library 

ONVMS applied to CBONVMS applied to CB--Metal Mapper  Metal Mapper  
data: Anomaly #2405data: Anomaly #2405

Inverted parameters  
Inverted parameters  

Single source inversion Multi targets inversion
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Gaussian mixture model for MMGaussian mixture model for MM--ONVMS  ONVMS  
clusteringclustering

Uses discrimination features from ONVMS   
Builds the mixture Gaussian distribution for K clusters; 
The expectation-maximization algorithm used to estimate 
weight, mean and variance for each of the K clusters; 

Mzz (t1 ) and Mzz 
(t1 )/Mzz (t30 )   are 
used as 
discrimination 
features.   

1 2 3 4 5 6 7 8 9 10
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Camp Butner Metal Mapper Classification resultsCamp Butner Metal Mapper Classification results
Scored Results  for the Metal Mapper Cued Data Sets:

121 Custom training 121 Custom training 
data sets requesteddata sets requested

All data were inverted All data were inverted 
and analyzed. and analyzed. 

No False Negatives.No False Negatives.

All TOIAll TOI--s were identified s were identified 
by caliber/type; by caliber/type; 
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SummarySummary

Advanced EMI models applied to CB Cued Data sets. Advanced EMI models applied to CB Cued Data sets. 
The Models are robust and noise tolerant. The Models are robust and noise tolerant. 
They are applicable for single and multi targets.They are applicable for single and multi targets.
Classifications are done using LM, JD and Gaussian Classifications are done using LM, JD and Gaussian 
mixture clustering. mixture clustering. 
Excellent classifications were demonstrated.Excellent classifications were demonstrated.
No False Alarms. No False Alarms. 
The  models are adapted for all advanced EMI sensors.The  models are adapted for all advanced EMI sensors.
The technology will be tested further  under the new The technology will be tested further  under the new 
ESTCP # MRESTCP # MR--201101.    201101.    
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